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Abstract

Aircraft performance can be optimized at the flight condition by using available redundancy among 

actuators. Effective use of this potential allows improved performance beyond limits imposed by 

design compromises. Optimization based on nominal models does not result in the best performance 

of the actual aircraft at the actual flight condition. An adaptive algorithm for optimizing performance 

parameters, such as speed or fuel flow, in flight based exclusively on flight data is proposed. The 

algorithm is inherently insensitive to model inaccuracies and measurement noise and biases and can 

optimize several decision variables at the same time. An adaptive constraint controller integrated into 

the algorithm regulates the optimization constraints, such as altitude or speed, without requiring any 

prior knowledge of the autopilot design. The algorithm has a modular structure which allows easy 

incorporation (or removal) of optimization constraints or decision variables to the optimization 

problem. An important part of the contribution is the development of analytical tools enabling 

convergence analysis of the algorithm and the establishment of simple design rules. The fuel-flow 

minimization and velocity maximization modes of the algorithm are demonstrated on the NASA 

Dryden B-720 nonlinear flight simulator for the single- and multi-effector optimization cases.

Nomenclature

A excitation amplitude, deg

ACC adaptive constraints controller

CD drag coefficient

 CD sensitivity with respect to Mach number

CD sensitivity with respect to a generic decision variable

D total drag, lb

Ep potential energy

FC flight condition (weight, center of gravity, altitude, winds, true airspeed)

G transfer function gain

G(s) transfer function

h altitude, ft

J optimized function

K optimizer adaptation gain

L lift, lb

m mass of the aircraft, slugs

M pitch moment, lb · ft

MAW mission adaptive wing (F-111 program)

PI performance index

PLA power-lever angle, deg

PSC performance-seeking control

dynamic pressure 

Rψ ψ−rotation matrix

CDu

CDδ

q 1 2ρV
2⁄( )
1
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s Laplace variable

s(t) excitation signal

S wing surface area (2433 ft2)

T thrust, lb

To period of excitation signal, sec

Treq thrust required, lb

u control signal

U,M,N,P,Q adaptive magnitudes of adaptive constraints controller

V true airspeed, ft/sec

α angle of attack, deg

β,τ parameters of envelope equivalent system

Γ curvature of optimized function J or performance index

γ flightpath angle 

δail aileron deflection, deg

δc decision variable

δel elevator deflection, deg

δfl flap deflection, deg

δs probing signal

δsurf generic surface deflection

δ(t) total input on decision variable

δo initial value of decision variable

η(t) trigonometric vector

µ adaptation gain of adaptive constraints controller

ρ air density, slug/ft3

ϕ phase angle, rad

ωo perturbation signal frequency, rad/sec

Introduction

Increasing competition among airline manufacturers and operators worldwide has spawned a recent 

all-out effort to reduce direct operating costs. Because an airline’s net profit is the difference between 

two large numbers (revenues and costs) measured in percentage of the costs, a small reduction in direct 

costs can have considerable leverage in an industry with a profit margin of about 5 percent (ref. 1). 

After ownership costs (approximately 50 percent of direct operating costs), the second major driver of 

costs is fuel consumption, which accounts for approximately 18 percent (ref. 1). The effect of aircraft 

performance on an operator’s profitability can be crucial because production costs are not usually 

under the operator’s control. Improved performance can result in less required thrust and can benefit 

engine wear. This improvement can increase engine life and further reduce maintenance and direct 

operating costs.



          
NASA conducted research in the late 1970’s and 1980’s that aimed toward improving aircraft 
performance. This effort was part of the aircraft energy efficiency and advanced fighter technology 
integration programs. (Ref. 2 surveyed past attempts to apply active controls to improve aircraft 
perform- ance.) The F-111 mission adaptive wing (MAW) program (ref. 3) showed the potential for 
applying the variable wing camber concept to transport aircraft. Standard wing and wing configuration 
point designs, by necessity, represent the result of major compromises among numerous design 
considerations and flight conditions. By adapting the wing configuration to the particularities of the 
flight, variable wing cambering allows those design compromises to be overcome. The MAW program 
clearly demonstrated the effects of this technology on performance improvements. Two modes of the 
F-111 MAW are applicable to transport aircraft: the cruise camber control mode, which was designed 
for real-time adaptive optimization with drag reduction, and the maneuver camber control mode, 
designed to maximize lift-to-drag ratio (L/D). 

Recent extensive wind-tunnel testing and flight experiments with wide-body transports, performed by 
the German company Messerschmitt-Bolkov-Blohm (now Deutsche Aerospace, a member of the 
Airbus Consortium), show that continuous camber variations can improve the efficiency of the most 
advanced wings, even at their best design points: a clear consequence of transcending the point design 
compromises (ref. 4). Besides drag improvements (potentially a 3- to 9-percent increase in L/D is 
reported in ref. 4), camber control may also improve other aspects of the aircraft design. For example, 
an increase of the maximum lift coefficient for the wing buffet onset (a 12-percent increase has been 
reported in refs. 4 and 5) or root bending moments alleviation is possible (ref. 6). The same team 
showed that coordinated deflections of flaps, ailerons, elevators, stabilator, and (possibly) leading-
edge devices can induce variable wing cambering without the penalty of a new wing box design or a 
significant weight increase (refs. 4, 5, and 6). The team has not yet reported on any in-flight adaptive 
optimization scheme for performance improvement. Only prescheduled camber repositioning has 
been considered.

The performance-seeking control (PSC) program is NASA Dryden Flight Research Center’s 
most recent attempt to develop an in-flight performance optimization algorithm. PSC was 
developed for optimizing the propulsion system of the F-15 highly integrated digital electronic control 
(HIDEC) research aircraft in quasi-steady state. PSC encompasses the following optimization 
modes: (a) minimum fuel flow at constant thrust, (b) minimum turbine temperature at constant thrust, 
and (c) maximum thrust. Both subsonic and supersonic flight testing of the PSC algorithm has been 
concluded and reported by NASA Dryden (ref. 7). The PSC program demonstrates that performance 
can be accrued beyond the design point with in-flight optimization; however, as an open-loop 
optimization scheme (no direct measure of a performance index (PI) is used), it relies heavily on a 
priori models. Model errors may, therefore, influence considerably the optimization process, 
especially when only low-level performance improvements are expected. Measurement biases also 
impact the estimation of the current engine parametrization used subsequently to feed the optimization 
model in PSC. (Refs. 8 and 9 analyzed the influence of measurement biases over the estimation 
process of PSC.) To accommodate the above problems, reference 7 suggested a closed-loop technique 
based on a direct measurement of a PI. 

Such a technique should take into account the particularities of actual flight conditions without being 
sensitive to model changes or model uncertainties. The MAW program pioneered that type of 
approach for its CCC mode using a trial-and-error algorithm, which works for large drag changes 
(i.e., 5 to 10 percent) but fails for low-level drag changes (i.e., 1 to 2 percent). Thus, both the PSC and 
MAW approaches for in-flight optimization are unsuitable for the low-level drag improvement 
expected in transport aircraft, albeit for different reasons. Accordingly, the development of a robust 
and efficient algorithm for in-flight aircraft performance optimization is in order. 
3
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This paper proposes a perturbational technique (ref. 10) for the adaptive optimization of an aircraft’s 

performance through excess thrust improvements. The algorithm, called adaptive performance 

optimization, estimates, online, the correlations between periodic perturbations introduced on the 

decision variables and their effects on a measured PI. The estimated correlations are then used to 

decide average changes on the decision variables that (locally) improve the PI. The optimization 

technique can be viewed as belonging to the gradient-type family, but, instead of signal differentiation, 

it uses averaging and signal integration. This characteristic gives the algorithm its strong robustness 

with respect to signal measurements’ noise and biases. 

For the application at hand, the optimization is performed using the available redundancy among 

surface effectors. The measured performance index (PI) includes the contributions coming, 

simultaneously, from the airframe and the engines to the overall performance changes. 

Sensors and instrumentation are, undoubtedly, important elements in any flight performance 

optimization research program. The issues, however, related to those elements are beyond the scope of 

this report, which focuses on the methodological aspects of the inflight optimization technique.

Following a general discussion of the aircraft performance optimization problem, the working 

principle of the proposed optimization technique is described. Then, a design procedure is suggested 

for the speed-maximization mode at constant altitude and power lever angle (PLA). The deflections of 

the surfaces involved (i.e., symmetric outboard ailerons and elevator) are linked by the constant altitude 

constraint. This link between the surfaces transforms the problem into a single decision variable (or 

single-surface) optimization. First, the control of the optimization constraint is left to the autopilot, 

which attempts to keep the net pitch moment equal to zero and the altitude constant. Up to this point, 

the paper closely follows that of España and Gilyard (ref. 11). Discussed here for the first time are 

some limitations of that approach when fast perturbation signals are used. It is shown that, if no 

provisions are taken, with a practical (nonideal) autopilot, the perturbations signals may induce 

oscillations on the constraints that steer the algorithm away from the optimum values for the decision 

variables. A solution to this problem, based on an adaptive oscillation canceller technique, is then 

proposed and tested in simulation. 

A fuel-flow minimization mode is next considered for constant altitude and speed. It is shown that a 

natural extension of the algorithm for the speed-maximization mode at constant altitude is able to take 

into account the extra constraint of the fuel-flow minimization mode. The algorithm also compensates 

for the effects of nonideal altitude- and velocity-hold functions of the autopilot. 

Both modes (velocity maximization and fuel-flow minimization) are then tested in simulation using 

more than one degree of freedom by optimizing simultaneously with respect to outboard ailerons and 

outboard flaps (multisurface optimization) while keeping the elevator as the compensating effector for 

pitch and altitude control. The testbed used was the B-720 nonlinear flight simulator at NASA 

Dryden’s Simulation Laboratory. The simulations assume full precision of all variables used in the 

feedback control laws.

Aircraft Performance Optimization

Most aircraft have a significant redundant control effector capability (i.e., more than one means of 

trimming out the forces and moments to obtain a steady-state flight condition). The challenging task 

of taking advantage of such capability for an aircraft adaptive in-flight performance optimization is the 

subject of this report. 



         
Control Effectors

Drag minimization potential exists for the entire spectrum of subsonic transport aircraft. Aircraft 

manufacturers recognize the potential for performance improvements based on available control 

effectors and have implemented some fixed-point reriggings based on flight test results.

Figure 1 illustrates the controls or variables that show potential for optimizing the performance of 

current-generation aircraft. These variables include elevator, horizontal stabilizer, outboard aileron, 

inboard aileron, flaps, slats, rudder, and center of gravity. Spoilers are not an option for performance 

optimization, although spoilers may be a viable controller for drag modulation. Potential selected 

control variable tradeoffs are possible between:

•  Symmetric aileron or flap (leading edge and trailing edge), or both, and horizontal

stabilizer or elevator

•  Inboard and outboard symmetric aileron or flap, or both

•  Elevator and horizontal stabilizer

•  Inboard and outboard elevator

•  Center of gravity and horizontal stabilizer

•  Rudder and differential thrust

•  Sideslip and rudder deflection

Optimization Strategies

In the following analysis, two optimization modes that take advantage of an increase in excess thrust* 

at constant altitude cruise flight are considered: velocity maximization with constant PLA and fuel-

flow minimization at constant speed. In the velocity-maximization mode, an excess thrust increase is 

sensed as an instantaneous acceleration increase. In this mode, the acceleration, aircraft speed, or both, 

is used as a PI (subject to the altitude constraint). When altitude and velocity are both constrained, 

excess thrust changes are reflected in thrust and fuel-flow changes. Constant velocity and altitude 

constraints are achieved by the autopilot through an inner control loop with respect to the optimizing 
5

Figure 1.  Typical subsonic transport control effectors.

Rudder

Slats

Ailerons

Flaps

Horizontal
  stabilizer Elevators

950075

*In practice, for subsonic aircraft at cruise conditions, the main contribution to performance increase comes from airframe drag 
reduction. However (technically, at least), the magnitude being optimized is the excess thrust defined as thrust minus drag. This 
allows for a more general algorithm perspective.
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control law. When only the altitude is held, the autopilot commands the elevator exclusively. When 

both altitude and velocity are held, the autopilot also sets the PLA.

Aircraft Model

The simulation results were obtained with a simulated B-720 at the nominal cruise flight condition: 

altitude 30,000 ft, Mach number 0.80, standard atmospheric day, total weight 200,000 lb. The original 

model was designed for low-speed flight conditions; drag characteristics of the control surfaces were 

not modeled or even available. Some modifications were required to conduct performance optimization 

algorithm design–evaluation at cruise flight conditions. Adding quadratic drag effects as a function of 

aileron and flap deflection (i.e., ) incorporated realistic drag characteristics into the model. In 

addition, a term representing drag increases with Mach,  was included. Fuel burn and aeroelastic 

effects were not considered. All simulation control laws used the full precision and accuracy of the 

variables for feedback control. All variables required for feedback were assumed to be available. No 

gust, turbulence, or noise effects were simulated.

Periodic Perturbation Extrema-Searching Technique

Adaptive optimization techniques with periodic perturbation and direct feedback of a measurable PI 

allow for direct optimization of the PI without requiring a model (refs. 10 and 12). 

Working Principle

The technique, first proposed in reference 12, consists of using sinusoidal probing signals 

superimposed on each of the decision variables of the optimization problem. A separate probing signal 

frequency is assigned to each decision variable. Online estimation of the correlations between the 

sinusoidal perturbations and PI are used to approximate the components of the local gradient of the PI 

with respect to the decision variables. The gradient thus estimated is then used as the search direction 

in the decision variable space to improve the PI value. The basic principle of the algorithm is better 

described for a quadratic single-input PI, here indicated by J.

For positive constants K and Γ, consider the unconstrained optimization of the function J(.) of a single 

decision variable δ (Γ will be referred as to the curvature of J):

(1)

The optimization algorithm is given by the equations (ref. 10):

(2a)

(2b)

where δc is the decision variable with initial value δo and optimal value δ*. The probing signal δs 

is superimposed on δc to give the total input δ(t). The phase angle ϕ is a design parameter whose 

interest will become clear later. The differential equation (2b) links, in a way that is discussed later, the 

search speed with the input-output correlation of function J. 

Given its nonlinear character, an exact analytical description of equations (1) and (2) is a complicated 

task. An approximated analysis is based on the assumption that δc(t) changes much more slowly than 

the sinusoidal probing signal δs and J(t). This slow variation is ensured by choosing a sufficiently small 

integration gain K, also a design parameter. The analysis technique (see, for example, ref. 13, chap. 6) 

CDδ
CDu ,

J δ( ) J δ∗( ) 1
2
---Γ δ δ∗ )2–(+=

δ t( ) δc t( ) δs t( )   δs t( ) A ωot( )sin=;+=

δ̇c KJ δ t( )( )A ωot ϕ–( )   δc 0( ) δo=;sin–=



consists of substituting the right-hand side of equation (2b) by its time average over a receding horizon 

of time with length equal to the period To = 2π ⁄ ωo.

For an arbitrary function f(t), the To-averaged function  is defined as

(3)

where τ is the integration variable. The following first-order approximation around δc(t) of expression 

(1) is also used:

(4)

With approximation (4) and definition (3), the averaged right-hand side of equation (2b) is calculated as 

(5)

where, by assuming that δc(t) remains almost constant during a time interval To, δc(t) is approximated 

by the To-averaged function 

From equation (5), the solutions of the nonlinear and time-varying differential equation (2b) are 

approximated by those resulting from the averaged linear and time-invariant differential equation (it 

can be easily shown using definition (3) that ):

(6)

Whenever ϕ ∈ (–π ⁄ 2, π ⁄ 2),  converges exponentially to the optimum value δ* with time constant 

2 ⁄ [KA2 Γ cos (ϕ)]. Two important properties can be derived from the above analysis:

P1: In the average, δc tends exponentially toward its optimal value δ* for wide ranges of ϕ, 

K, and Γ. 

P2: In the average, biases on the measurements do not affect this result because, from 

equations (3) through (5), their averaged effect on equation (6) is zero.

To obtain the next result, we now assume that, for a large enough time , (practical) convergence has 

already been achieved, and thus, if n is an integer such that  then  

From equation (2b), we now can write

(7)

Thus, the following necessary condition for convergence follows:

(8)

f t( )

f t( ): avg f t( ){ }:
1

To
------  f τ( ) τd

t To–

t

∫= =

J A ωot( ) δc t( )+sin( ) J δc t( )( ) Γ δc t( ) δ∗–( )A ωot( )sin+≅

KΓ δc t( ) δ∗–( )A
2
avg ωot( ) ωot ϕ–( )sinsin{ }

1
2
---KΓ δc t( ) δ∗–( )A

2
avg ϕ( ) 2ωot ϕ–( )cos–cos{ }=

δc t( ).

δ̇c δ̇c=

δ̇c  
1
2
--- KΓ δc δ∗–( )A

2 ϕ( )cos–≅

δc

t′
t nTo t′,>= δc t( ) δc

∞ δc
*
.= =

δc t( ) δc
* δc t( )≅ δc

*
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t'

t
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 δs,
 
 
 

 :   
1

t t'–
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f

t
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Equation (8) shows that the algorithm attempts to adjust the value of δc so that the correlation of the PI 

and the excitation signals is zero. This correlation interpretation of the algorithm, and the fact that 

sinusoidal signals of different frequencies have zero correlation, explain another important property of 

the algorithm; namely,

P3: The effects that an additive measurement noise on PI have on the average of δc are 

negligible unless the noise power spectrum is concentrated around the excitation 

frequency ωo.

Control Law Structure: Analysis and Design

Figure 2 shows a block diagram of a practical extremum-searching system with a single-decision 
variable (for the application addressed in this paper the decision variable δ will be a control surface 
deflection). The plant’s PI measurement process is represented by the nonlinear static characteristic 
J( · ) in series with a linear filter Gp(s) representing possible sensor dynamics. The transfer functions 
Gf and Ga are, respectively, a signal-shaping filter used to eliminate undesired frequency components 
at either side of ωo, and a low-pass filter. All transfer functions are assumed to have unitary gains. The 
tandem (M, Ga) in figure 2 acts as a demodulator, eliminating most of the ωo-harmonics remaining in 
the feedback loop (mainly the 2ωo term; see eq. (5)). As an exponentially weighted time average of the 
product π, the output of Ga (the convolution between the low-pass impulse response and π) is seen as 
an estimate of the current correlation between the inputs to the multiplier M. The cascaded block 
GfGp(s) introduces a phase angle ϕo at the frequency ωo.

For design and analysis purposes, only the information contained in the low-frequency components of 
the signals in the circuit is of interest. For that reason, following the guidelines of reference 10, 
chapter 9, the system in figure 2 is transformed into an equivalent low-pass network. Figure 3 shows 
the corresponding equivalent network for a quadratic J as in equation (1). 
Figure 2.  A single-dimensional extremum-searching algorithm.

Figure 3.  Envelope equivalent circuit.
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Under each block of figure 3 is indicated, in parentheses, the originating block from figure 2. In the 

same figure,  represents the low-frequency component average of the feedback signal δc. The 

parameters of the equivalent system are calculated (see ref. 10 and the example in appendix A) as

(9)

where  and ϕ(ωo) indicate, respectively, the module and the phase angle of the transfer 

function G at jωo. The equivalent network in figure 3 is used for the stability analysis and design 

purposes of the adaptive optimization algorithm. The designer has at his disposal the gain K, the phase 

compensation ϕ, the perturbation signal amplitude A, and the frequency ωo. The transfer functions of 

the filters Gf and Ga can also be used to refine the design. For K sufficiently small (as we saw, a small 

K is also required for the validity of our analysis), τp > 0, τf > 0 (which is the case in practice), and ϕ 

selected such that ϕ – ϕo ∈ (–π ⁄ 2, π ⁄ 2). The integrator on the feedback path ensures the exponential 

convergence of  to its optimal value δ* under wide changes of the open loop gain (i.e., G, βf, βp 

etc.).** The convergence to the optimum is, thus, a robust property of the algorithm.

Single-Surface Velocity Maximization Mode

For the sake of clarity, we first consider the speed-maximization mode. The fuel-flow minimization 

mode, proposed later, is seen as a natural extension of the speed-maximization mode. 

Design Approach With Ideal Altitude-Hold Assumption

This mode makes use of an altitude hold with the PLA kept at a constant position. From the three-

degrees-of-freedom longitudinal flight equations of motion (ref. 14),

(10a)

(10b)

(10c)

(10d)

The wind component of the acceleration is given by

(11)

Flying conditions (FC) includes all the uncertainties and unmodeled effects of changing factors, such 

as weight, center-of-gravity position, winds/aircraft velocity, altitude, and aging engines and surfaces. 

The expression T( δ, FC) corresponds to the unknown actual (as opposed to nominal) engine static 

characteristics relating thrust with the FC at constant PLA. The vector δ in equation (11) is a generic 

vector of independent decision variables. The dependence of T on δ emphasizes possible effects of the 

δc

βp Gp jωo( )   τp;  
∂ϕp ω( )

∂ω
-------------------

ω ωo=

–= =

β f G f jωo( )   τ f;  
∂ϕ f ω( )

∂ω
-------------------

ω ωo=

–= =

G jωo( )

δc

mV̇ D– mg  γ T   αcos+sin–=

mV γ̇ L mg  γ T   αsin+cos–=

Iyyq̇ M=

ḣ V γsin=

V̇
1
m
---- T δ FC,( )  α q V ρ,( ) SCD δ FC,( )– mg  γsin–cos=
9

**This can be concluded from the diagram of figure 3 using standard linear techniques (e.g., root locus).
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surface configuration on the net engine thrust during the optimization (mainly because of airspeed 

changes in magnitude and direction). Two decision variables, the deflections of outboard ailerons (δail) 

and outboard flaps (δfl), are considered in this report. This section considers only one independent 

surface deflection denoted generically as δsurf ( ∈ {δail, δfl}) The other surface is assumed at its 

nominal deflection, typically δ = 0. The elevator deflection δel is a dependent variable and, thus, does 

not explicitly appear in equation (11). The deflection δel is implicitly determined by δsurf and the given 

level flight condition.

We designate as optimal the surface configuration that maximizes the excess thrust:  With 

the assumption of an ideal altitude hold, i.e.,  it is seen from equation (11) that the 

optimum corresponds to an extremum of  This latter variable can thus be used as the measurable PI 

for the optimization. In practice, the velocity V may be a better parameter than  in terms of available 

sensor resolution. For this purpose, España and Gilyard (ref. 11) suggested an algorithm modification 

that allows the use of V (instead of ) as the measurable PI. That modification will not be considered 

in this report, whose focus is on more general methodological issues.

The optimal deflection  must satisfy the necessary condition for optimality:

(12)

Figure 4 shows the autopilot and optimizer loops for a single surface optimization (δsurf); h, , and hD 

are, respectively, the altitude, its time-derivative, and the engaged (desired) altitude; δs = A sin(ωot) is 

the excitation or probing signal;  is the elevator command generated by the altitude hold 

(autopilot); δc is the surface command generated by the optimizer; δo is any initial estimate of the 

optimal deflection.

The frequency ωo of the sinusoidal excitation δs, as well as its amplitude A, is chosen small enough that 

the dynamics of the aircraft in closed-loop operation with the autopilot can be neglected. Such a choice 

is required to ensure the validity, in practice, of the ideal autopilot assumption. For the design, the 

sensor dynamics (fig. 3) are also neglected by assuming βp = 1 and τp = 0.
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The effects of configuration changes on the engine’s net thrust are not taken into account for design and 

analysis purposes. The underlying approximation allows for a simplified design procedure as well as a 

deeper insight into the qualitative and quantitative aspects of the performance optimization algorithm. 

Nominal aero data are used to determine the trim-drag characteristic for the nominal flight conditions 

as a function of the independent surface δsurf varying in its admissible range. (At each point of the 

characteristic, the dependent variable δel takes the value necessary to compensate for moment changes.)

The (nominal or measured) trim point characteristic relating δsurf with CD (trim drag coefficient) is 

fitted with a second-order polynomial from which the characteristic’s average curvature ΓCD is 

determined (eq. (1)). Now, from the incremental relationship,

(13)

obtained from equation (11), the average curvature for the PI (  in this case) is determined as (eq. (1)): 

Γacc = ΓCD S ⁄ m. Notice that, given the algorithm’s convergent properties, discussed in the previous 

section, the above constants need only be known approximately. For simplicity, the mass is assumed 

constant in this paper (no fuel burn). In practice, the mass value used in equation (13) could be updated 

periodically with an estimate of the fuel consumed. As stated before, changes in the actual Γacc will 

only affect the convergence dynamics of the algorithm, not the final value.

To keep the design simple, Gf and Ga in figure 2 are chosen as the first-order transfer functions:

(14)

Given the roles of Ga and Gf, ωo has to be simultaneously on the band pass of Gf and out of the band 

pass of Ga. For this purpose, the simple choice (admittedly, somewhat an arbitrary one) is adopted: 

ωh = ωl = ωo ⁄ 2. The phase angle induced by Gf at ωo can be shown to be ϕf = 26.5°. Because the 

dynamics of the aircraft have been neglected, we choose, in figures 2 and 3, ϕ = ϕo = ϕf. From 

equations (9), we then have

(15)

From equations (14) and (15), the open-loop transfer function poles of the equivalent system in 

figure 3 are 0, ωo ⁄ 2, 5ωo ⁄ 2. After normalizing by ωo, the open-loop transfer function results in

(16)

where G is the combined (nondimensional) gain of the blocks J, Gf, M, Ga, and K ⁄ s of figure 3 put in 

cascade. The normalized dynamics of the performance optimization algorithm are characterized by 

the closed-loop poles of the transfer function (16). Those poles can be conveniently placed by an 

appropriate choice of the normalized gain . The critical normalized gain for a deadbeat response can 

be shown to be  = 0.1408, with a corresponding pair of coincident normalized dominant closed-
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loop poles at –0.24 and a single normalized fast pole at –2.52. With the above choice of  the 

normalized closed-loop response enters the 5-percent band around the final value at approximately 

20 sec. As a consequence, the optimizer with excitation frequency ωo is expected to reach the 5-percent 

band of the optimum at 20 ⁄ ωo sec. The algorithm’s gain K is calculated from equation (16) after 

appropriate constants substitutions. This completes the algorithm design. Equation (16) also gives a 

way to schedule K with the dynamic pressure  (281 lb/ft2 for the nominal flight condition, i.e., 

altitude 30,000 ft, Mach number 0.8). Notice that for a given design criterion (a critical design criterion 

is chosen in this report), the adaptation gain, the corresponding closed-loop poles, and consequently, 

the convergence speed of the algorithm are all proportional to the excitation frequency ωo.

Effects of Constraint Violation

To search for the optimal condition, the adaptive performance optimization algorithm uses estimated 

correlations between the PI and sinusoidal probing signals applied to the decision variables. For the 

velocity maximization mode with fixed throttle position, the horizontal acceleration (measurable PI) is 

a direct measure of the excess thrust only if the ideal altitude-hold assumption (namely,  or 

) is satisfied. In practice, however, the latter condition is satisfied only approximately, and 

the altitude’s derivative features remnant oscillations of frequency ωo. Those oscillations may have a 

determinant effect on the algorithm convergence properties. In fact, appendix B shows that the 

difference between the final value  attained by the algorithm and the optimum  is 

approximated by

(17a)

(17b)

where, by definition, ΓD : = SΓCD; corr{ . , . } indicates the temporal correlation between the signals 
inside the brackets;  is the average final velocity; and Ep is the aircraft’s potential energy. The offset 
with respect to the optimum, indicated in equations (17), cannot be compensated for unless a detailed 
mathematical description of the aircraft is known beforehand. This is precisely what the optimization 
methodology intends to avoid. Given the low level of performance improvement expected and the 
direct influence of the total aircraft weight (mg in eq. (17a)), those deviations may be significant for 
large transport aircraft. Moreover, the offset may be magnified in multivariable optimization because a 
superposition of the effects of the individual loops could be expected in this case.

Equation (17b) gives an energy interpretation of the optimization offset. If the altitude is varying, an 
excess thrust change is not necessarily spent totally into a kinetic energy change but also into a 
potential energy rate-of-change that goes undetected by the measured PI ( ). Interestingly, changes in 

 induced by changes in environmental conditions (such as gusts, winds, and air density changes), 
un- correlated with respect to δs, will not produce, on the average, any optimization offset. This is 
inherent to the correlation approach used to estimate the gradient, given that only those changes 
correlated with δs are weighted by the online correlator.

We now denote by Gγ(s) the transfer function between δs and the path angle γ when the altitude hold is 
in the loop. Recalling that δs(t) = A sin(ωot), equation (17a) is transformed into (appendix B)

(18)
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where  is the module, and ϕγ(jωo) is the phase angle of Gγ(s) at jωo. The factor 

 is the disturbance rejection at ωo provided by the altitude hold over the path angle. The 

altitude hold is typically designed so as to make  big at very low frequencies (integrator 

in the loop). For increasing frequencies, the autopilot rejection capability deteriorates, thus increasing 

the optimization offset. Consequently, because low excitation frequencies correspond to slow 

algorithm convergence (see comments following eq. (16)), the algorithm imposes a compromise 

between convergence speed and accuracy. The next section proposes a solution to this compromise.

Adaptive Constraints Control: An Adaptive Noise-Canceling Approach

To resolve the compromise just mentioned, the constraint control function of a practical autopilot may 

need to be enhanced. However, because the autopilot design requirements are specific to the type of 

aircraft and mission, a method that requires the redesigning of the autopilot to fit the needs of the 

optimizer is not desired in practice. The compromise is solved by using an adaptive constraint control 

technique that leaves the autopilot untouched and, even more interesting, does not require any a priori 

knowledge of the autopilot.

Adaptive noise-canceling techniques are particularly effective for eliminating undesired disturbances 

with known frequency spectra. The technique was pioneered for the discrete time case by Widrow and 

others (refs. 12 and 13). In appendix C, the continuous time version of the algorithm, suited for the 

application at hand, is derived using current adaptive theory tools.

In our problem, we seek to eliminate the ωo-frequency oscillations present in  (or at least to 

decorrelate them with respect to the probing signal δs; see equations (17)). Synthesizing a sinusoidal 

elevator command signal  with adequate phase and magnitude can compensate for the excitation 

signals introduced on the optimizing surface (the aileron in this case).

We assume, for the moment, that superposition can be invoked to decompose  in the following way 

(linearity assumption): 

(19)

where  is the aircraft-autopilot -response to the probing signal δs applied to the ailerons’ 

command;  is the effect on  caused by the compensating signal ;  is the basic  component 

not reflecting the effects of δs and ; and Gel(jωo) is the transfer function between the elevator and 

. We now define  as

(20)

With an adequate choice of the vector S, any sinusoidal signal s(t) of known frequency ωo can be 

written as

(21)

In particular, the (unknown) compensating elevator’s signal command is expressed as

(22)
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where : =  is the parameter vector, to be determined by the adaptive algorithm, such that 
 Now, for  and ψ(jωo), respectively, the magnitude and phase angle of the 

transfer function Gel(jωo), we can also express  as

(23)

where Rψ indicates the ψ-rotation matrix. Following the results of appendix C for µe: 0 < µe << 1,  

can be adapted with the algorithm:

(24)

The transfer function Gel relates aerodynamic forces/moments (proportional to the elevator’s 

deflection) with a mechanical speed. In consequence, as a simple mechanical argument shows, Gel has 

a dominant pole at the origin, implying a phase shift of approximately –π ⁄ 2. Under these conditions, 

the use of the modified version

(25)

is recommended in appendix C, where the rotation matrix  is introduced into the algorithm to 

improve stability and convergence speed when an estimate ψo of ψ is available. 

Summarizing, for ψo = –π ⁄ 2, the adaptive velocity maximization algorithm with adaptive constraints 

controller (ACC) is given by the following set of equations (∆c(s) and Π(s) denote, respectively, the 

Laplace transforms of δc(t) and π(t)):

(26a)

(26b)

(26c)

(26d)

(26e)

(26f)

(26g)

Figure 5 depicts the resulting block diagram of ACC (adaptive disturbance rejection on the  signal). 

The changes in the interconnections for the diagram of figure C-2 of appendix C account for the –π ⁄ 2 

rotation required on η(t).

Arguments similar to those leading to equation (8) allow us to interpret equations (26e) to (26g) as an 

adaptive mechanism to decorrelate the fundamental ωo-harmonic in  with respect to δs(= A sin(ωot)). 

From equation (17a), this is the necessary condition to suppress the bias in the optimization (higher 

harmonics of ωo are decorrelated with the fundamental ωo). Because convergence only requires 

decorrelation between (the fundamental harmonic of)  and δs (equivalent to  in equation (26e)), 
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Û
˙ µe– ḣη t( )=
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Figure 5.  Adaptive constraints controller:  signal synthesizer.
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we conclude that the assumption of linearity between the effectors and  is not needed (i.e., higher 

harmonics do not affect the convergence process) for the optimizer combined with ACC to reach 

the optimum. 

Consequently, the algorithm (26) is expected to work well with actuators involving such nonlinear 

elements as position or rate saturations, hysteresis, dead bands, and nonlinear time delays. Equation 

(26f) shows that, upon convergence,  is also uncorrelated with respect to cos(ωot). This is not 

necessary for convergence of the optimizer, but, given that δs and cos(ωot) are orthogonal signals, this 

fact has as a consequence the (theoretical) annihilation of the ωo-oscillations in .

Results of Simulated Experiment

For purposes of demonstration, the aileron deflection, δail, is selected as the active surface. Calculated 

from the trim point characteristics at the nominal flight conditions, the optimal δail deflection has an 

approximated value:  = 3°. From the aerodata the average curvature, ΓCD is estimated as ΓCD = 
7.32E – 05 [deg–2], giving for the PI average curvature the value: Γacc = .ΓCD S ⁄ m = 8.0E – 

03 [ft.sec–2.deg–2]. Following the design criterion mentioned previously, from equation (16) we have

 (27)

The amplitude of the excitation signal was chosen as A = 1°. Two excitation frequencies, with a ratio 1:3, 

were selected to investigate the effects of the ωo parameter. The lower value, ωo = 0.025, was set low 

enough, through a trial-and-error process using the simulation, to ensure good enough rejection, by the 

altitude hold, of the -oscillations. For this case, it corresponds with Kail = 0.79 [sec3 ⁄ ft], and only 

small differences in the PI with and without ACC are expected.

Figures 6(a) to 6(h) display the results. Figure 6(a) shows the corresponding increase of the true 

airspeed caused by an increase of the net thrust provided by the optimizer. Figure 6(b) shows the 

corresponding reduction of CD. As seen by comparing the curves with and without ACC, differences in 

the velocity for very low excitation frequencies are only minor. From figure 6(b), however, the average 

CD is slightly smaller with ACC. For the chosen ωo, the optimizer is expected to attain the 5-percent
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ḣ

ḣ
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(a) through (d)

Figure 6.  Velocity maximization mode; δail is the decision variable; ωo = 0.025.
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(e) through (h)

Figure (6).  Concluded.
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band of its final value at approximately 20 ⁄ ωo = 800 sec, which is in total agreement with the plot in 

figure 6(c). This fact is in good agreement with the dynamic predictions provided by the analytical 

tools introduced previously in the Design Approach section.

The steady-state (final) aileron deflection, however, does not coincide with the optimum value 

determined from the characteristics (i.e., 3.8°) when ACC is not used. As shown, this lack of 

coincidence is the result of the constraints violations caused by the invalid assumption of an ideal 

autopilot (notice the ±20 ft oscillations in the altitude shown in fig. 6(e) without ACC). On the other 

hand, figure 6(c) shows that, with ACC, δail converges to the optimal value:  = 3.8°. In this case, 

however, the dynamic cannot be predicted using the results of the Design Approach section, which do 

not assume the presence of ACC.

The overall dynamic now depends on the newly incorporated ACC module whose dynamic is 

implicitly determined by the adaptation gain, µe. The latter gain was chosen as µe = 0.001 for these 

experiments. Figure 6(g) displays the time history of the  and  parameters. Figure 6(f) illustrates 

the real effect introduced by ACC; namely, a dramatic reduction in the oscillations of  after the 

adaptation period. While this adaptation is performed, notice how the surface deflections with ACC 

depart from those without ACC (fig. 6(c) also displays the corresponding δel deflections for both with 

and without ACC cases).

Notice, comparing figures 6(c), 6(f), and 6(g), how the correction towards the final (optimal) value  

parallels the convergence of ACC and corresponding asymptotic elimination of the oscillations in . 

The effects on  shown in figure 6(d) are also of interest. The algorithm with ACC reduces the 

oscillations on  mostly eliminating the first harmonic. The fact that only the second harmonic 

subsists in  and CD (fig. 6(b)) is a direct result of attaining an extremum for the acceleration 

coincident with drag minimization. From the plots shown in figures 6(h), the product,  has a 

nonzero average without ACC, indicating correlation between both signals. This correlation, as 

predicted, is responsible for the optimization offset. The curves with ACC demonstrate, on the other 

hand, how ACC asymptotically eliminates this correlation. Figure 6(e) shows the effects of ACC on the 

altitude oscillations.

The effects of a lack of an appropriate constraint control are accentuated when higher excitation 

frequencies are used. Figures 7(a) through 7(h) show simulated results for ωo = 0.075 and 

corresponding gain Kail = 2.4[sec3 ⁄ ft]. In particular, figures 7(a) and 7(b) show that, without ACC, 

performance may even be degraded (decrease in V, net increase in CD) with respect to the 

nonoptimized case. This degradation results from a large offset between the optimum and the actual 

convergence value of the optimizer, as figure 7(c) shows. Notice, nevertheless, in figure 7(c) that, 

without ACC, the 5-percent convergence time is approximately equal to 20 ⁄ 0.075 = 266 sec, showing 

that the dynamic behavior is still, as theoretically predicted, three times faster than with ωo = 0.025.

As stated before, the increase in convergence speed is not apparent when the ACC is adapted 

simultaneously with the optimization. By starting the ACC with pretuned parameters, the effects of 

ACC dynamics on the optimization are sensibly reduced. Under these conditions, the predicted dynamic 

(from the Design Analysis section) comes closer to the actual results (the bold lines in figs. 7(a) to (c)), 

featuring three times faster responses of the surface deflections (compare fig. 7(c) with 6(c)). For this 

experiment, however, in comparing the optimizer that has pretuned ACC with that with zero ACC initial 

parameters, we notice that the airspeed improves only slightly within the time horizon shown.

We now make an important distinction between attaining the optimal surface configuration and 

attaining the maximum speed. In fact, even after the configuration has been optimized, the newly
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ḣ

V̇

V̇

V̇
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(a) through (d)

Figure 7.  Velocity maximization mode; δail is the decision variable; ωo = 0.075.
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(e) through (h)

Figure 7.  Concluded.
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available excess thrust causes the aircraft to continue to accelerate. Dynamic pressure and Mach 
number effects later stop the speed increase. The slow diminution in CD, seen after the optimization, 
parallels a slow average diminution in the angle-of-attack speed increase (more speed, more lift, and 
thus less α and CD) not shown in the figures.

The rest of the plots in figures 7(a) through 7(h) are similar to those in figures 6(a) through 6(h). 
Comparing both sets of figures, we see that the increase in ωo produced larger  oscillations (fig. 7(e)) 
and a stronger correlation between  and δail (fig. 7(h)); both effects are responsible for the larger 
deflection offset when ACC is not used.

This simulated experiment shows that the proposed approach may improve the optimization 
convergence speed (through a faster excitation) without degrading the accuracy. Similar significant 
improvements were obtained with experiments involving symmetric flaps as the decision variable or the 
combination stabilator–elevator as the pitch-compensating actuator. In the latter case, the stabilator was 
driven by a constant-speed motor with a dead band in its control loop. In spite of these nonlinearities, 
the algorithm featured a perfect convergence to the optimal stabilator/aileron configuration.

Single-Surface Fuel-Flow Minimization Mode

In the fuel-flow minimization mode, the constraints are the engaged altitude and speed. Excess thrust 

is kept constant (at zero) while reducing simultaneously the aerodynamic drag and engine thrust. 

Similar to that for the velocity maximization mode, the optimal surface configuration is such that 

small changes around it keep the excess thrust almost unchanged (excess-thrust extremum). Because 

the thrust T is affected by both PLA and the surface configuration, we assume, for small configuration 

changes, that it may be decomposed as T = Tp(PLA) + Tδ(δsurf). For the velocity optimization mode, 

this distinction was not needed because PLA was unchanged.

Using a correlation interpretation, a necessary condition for the optimum is that corr {Tδ – D, δs} = 0 

(as before, δs is the small sinusoidal perturbation applied to the actuator chosen as decision variable). 

This condition is also sufficient for the unimodal case, which is the typical case in practice for the 

problem at hand. Using the fact that Tp(PLA) is a monotone function of PLA, from the velocity equation 

of the longitudinal flight motion, equation (11), the optimality condition, is satisfied if simultaneously

(28a)

(28b)

(28c)

For ideal altitude and velocity holds ( ), the first two conditions (28) are automatically 

satisfied. As was already discussed, however, an actual practical autopilot implementation may not 

totally cancel the oscillations in  and . Similarly, as with the velocity optimization case, those 

conditions are achieved by superimposing a set of (adaptively synthesized) signals on the commands 

generated by the autopilot. The resulting PLA and δel commands are thus

(29a)

(29b)

As before, the superscripted ‘s’ indicates the synthetic signals. The superscripted ‘ap’ identifies the 

magnitudes generated by the autopilot. The degrees-of-freedom for the constrained optimization are 
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δsurf, PLAs, and . The magnitude  is used to impose condition (28b), as in the velocity 

optimization case, by means of the algorithm depicted in figure 5. Two alternatives are left for δsurf and 

PLAs:

(1)  PLAs is used to ensure that corr { , δs} = 0 while the optimizer searches for the surface 

(δsurf) such that corr {PLA, δs} = 0. This alternative is equivalent to choosing PLA as the 

measured PI.

(2)  PLAs is used to impose corr {PLA, δs} = 0, while the optimizer searches for the surface 

configuration such that corr { , δs} = 0. In this case,  plays the role of the PI.

The second alternative uses the same PI ( ) as the velocity optimization mode uses, and thus, both 

modes share the same optimizer. This alternative allows us to design and tune the optimizer for only 

one mode, preferably for the simplest one (i.e., the velocity maximization mode), and use the same 

design for both modes. Given this attractive characteristic, the second alternative was retained.

The adaptive constraints controller, which is used to ensure the condition corr {PLA, δs} = 0, is easily 

obtained from the diagram of figure C–2 of appendix C by identifying PLA with ym, u with PLAs and 

letting the transfer function of channel C equal 1. The resulting structure corresponds to the original 

adaptive noise canceller proposed by Widrow et al. (ref. 12).

Summarizing, the adaptive fuel-flow minimization algorithm with adaptive constraints controller is 

given by the set of equations (26a) to (26g) combined with the following:

(26h)

(26i)

(26j)

(26k)

where µp : 0 < µp << 1. Figure 8 depicts the diagram corresponding to equations (26).
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Results of Simulated Experiment

We now consider the results of the simulation tests performed for the fuel-flow minimization mode, this 

time using symmetric flaps deflection (instead of ailerons) as the decision variable. The nominal trim 

point characteristics at the given flight condition indicate that the optimal symmetric flap deflection is 

 ≈ 3°. From the aero data, ΓCD was estimated as ΓCD = 1.4E – 05[deg–2], and the corresponding 

Γacc as Γacc = 15.3E – 03[ft.sec–2.deg–2]. In this experiment, ωo was chosen to equal 0.0975 rad/sec. 

Similarly as in the aileron optimization case, the excitation amplitude was taken as A = 1°.

Choosing the same algorithm design as for the velocity maximization mode, i.e.,  = 0.1408, we 

calculate Kfl = 1.62[sec3 ⁄ ft]. The expected convergence speed of the algorithm is characterized by the 

estimated rise-time to the 5-percent band: 20 ⁄ 0.0975 = 205 sec. As with the velocity maximization 

mode, the elevator is used to compensate for pitch moment changes. The altitude and the velocity holds 

were both activated. The signals synthesized by the ACC were added to those generated by the autopilot.

As discussed before, ACC for the fuel-flow minimization has two parts. The part common to the 

velocity maximization mode, represented in figure 5, is called here ACC1. The other part, specific for 

the fuel-flow minimization mode, is called ACC2 and is described by equations (26h) to (26k). 

Figure 9(a) shows a significant difference in the averages of the PLA (only deviations with respect to 

the trim value of PLA are indicated in the figure) between the cases with and without ACC.

The difference in the average is also noticeable between the cases ACC1 alone and ACC1+ACC2. 

Note, particularly, for the ACC1 + ACC2 case, how the first harmonics in PLA and CD (fig. 9(b)) are 

totally eliminated. This fact, together with the visible presence of the second harmonics, signals the 

convergence of the average flap deflection to the optimum value. This result is corroborated by 

figure 9(c), which shows that only the ACC1 + ACC2 option tends to the a priori estimated optimum 

(  = 3°), although with ACC1 only, the convergence error is still considerably smaller than without 

ACC. As expected, the ACC1 eliminates the oscillations in  (fig. 9(d)). This result is in agreement 

with those obtained for the velocity maximization mode. No further improvement is obtained in this 

sense with ACC2.

Figures 9(e) and 9(f) show the positive effects of ACC on the regulation of, respectively, velocity and 

altitude. Figures 9(d) and 9(h) demonstrate the clear-cut effect of ACC in compensating for the 

remnant oscillations in potential and kinetic energies. Finally, figure 9(g) shows the time evolution for 

the adaptive parameters, for ACC1 and ACC2. The adaptation gains for algorithms ACC1 and ACC2 

were arbitrarily made 10 times higher than the one chosen for velocity maximization, i.e., µe = µp = 

0.01. The intention was to show, on one hand, what effects these gains have on the adaptation speed 

(notice the time-scale change between figs. 9 and 6 through 7) and, on the other hand, that the choice 

of their value is not critical for design purposes.

Multisurface Optimization

In this section, we use the algorithm developed in previous sections to optimize, simultaneously, more 

than one decision variable. The decision variables considered are symmetric ailerons δail and 

symmetric flaps δfl. As before, the elevator deflection and the PLA are dependent variables used to 

ensure the optimization constraints. Figure 10 shows the general structure of the multidecision 

variable optimization.

Two frequencies, ωail = 0.075 and ωfl = 0.0975, are used for the independent excitation signals δs1 and 

δs2, respectively, added to the command signals δail and δfl. The ratio ωfl ⁄ ωail = 1.3 is chosen to avoid 

possible low harmonic resonances. Each optimizer loop has its corresponding set of ACC1 and ACC2

δ fl
*

Gc

δ fl
*

ḣ
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(a) through (d)

Figure 9.  Fuel-flow minimization mode; δfl is the decision variable; ωo = 0.0975.
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(e) through (h)

Figure 9.  Concluded.
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Figure 10.  Multivariable optimizer.
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modules. Each loop is designed independently, following the guidelines presented in the previous 

sections. The corresponding adaptation gains are Kail = 2.4[sec3 ⁄ ft] and Kfl = 1.62[sec3 ⁄ ft]. The gains 

for ACCs in both loops are selected as µe = µp = 0.005.

Velocity Optimization Mode: Results of Simulation Experiment

Figure 11 shows the results for the multisurface velocity optimization mode. Two cases are considered: 
(1) with pretuning of ACC parameters (i.e., the initial condition of adaptive ACC parameters set equal 
to the final values of a previous optimization),  and  for the aileron loop and , and 

for the flap loop; (2) without pretuning of the ACC parameters, (i.e., all initial conditions are set 
equal to zero and the ACC parameters are adapted simultaneously with the optimization).

As can be seen from figures 11(a) and 11(b), the difference between both cases in the airspeed and total 
CD coefficient is almost unnoticeable. Compared with the single-surface optimization cases, a higher 
final speed and lower CD coefficients are attained in the multivariable case. Figures 11(c) and 11(d) 
show the time history of the surface deflections. The deflections appear to converge to approximately 
the same values as those in the single-surface optimization case, suggesting only a light coupling among 
the optimization variables. With pretuned ACC parameters, the surface deflections show better transient 
behavior. Thus, a smoother transient on the magnitudes is depicted in figures 11(e) to 11(g). The same 
figures show, consistent with the algorithm’s expected asymptotic behavior, that, independently of the 
initial condition, the time history of both cases tends to converge toward each other. Finally, figures 
11(h), and 11(i) show the time history of the ACC parameters with and without pretuning.

M̂ail N̂ail M̂ fl

N̂ fl
(a)

Figure 11.  Multisurface velocity optimization mode with and without pretuning of the ACC parameters.
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(b) through (e)

Figure 11. Continued

.0225

.0220

.0215

.0210

0 500

Total,
CD

1000 1500
Time, sec

2000

950105

With
  pretuning

Without 
  pretuning

6

4

2

0

–2
0 500

Surface
deflection
(without

pretuning),
deg

1000 1500
Time, sec

2000

950106

δail

δf l

δel

4

2

0

0

δail δf l

δel

500

Surface
deflection

(with
pretuning),

deg

1000 1500
Time, sec

2000

950107

1

–1

0

0 500

h,
ft/sec

1000 1500
Time, sec

2000

950108

.

With
  pretuning

Without 
  pretuning



28

(f) through (i)

Figure 11.  Concluded.
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Fuel-Flow Optimization Mode: Results of Simulation Experiment

Figure 12 shows the corresponding results for this mode. Figures 12(a) and 12(b) show a PLA 
reduction along with a reduction in the total CD coefficient. As expected, the transient behavior is 
improved when the ACC parameters are pretuned. This improvement is also reflected in a sensible 
reduction of the excursions in the decision variables δail, and δfl (figs. 12(c) and 12(d)) and an 
improved transient behavior for the variables shown in figures 12(e) through 12(h). Again, only the 
transient behavior is affected with pretuning, while, asymptotically, the pretuned and nonpretuned 
cases are indistinguishable.

Figures 12(i) to 12(l) show the adaptive parameters , , , and . Notice how the learning period 

of these constants approximately coincides with the bad transient period in figures 12(e) through (h). 

This fact justifies the use of prelearned values of the , , , and  stored in memory as future 

initial conditions for the optimization algorithm. Those values, taken from a previous optimization (or 

resulting from a purely in-flight identification trial without optimization) at the given flight condition, 

are considered the best available characterizing the actual aircraft and flight condition.

M̂ N̂ P̂ Q̂

M̂ N̂ P̂ Q̂
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(a) through (c)

Figure 12.  Multisurface fuel-flow optimization mode with and without pretuning of the ACC parameters.
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(d) through (g)

Figure 12.  Continued
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(h) through (k)

Figure 12.  Continued
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(l)

Figure 12.  Concluded.
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Concluding Remarks 

An adaptive perturbational technique for in-flight performance optimization of a transport aircraft is 

proposed and demonstrated for a simulated B-720 aircraft. The technique is simple and easy to design 

and implement in an onboard computer. When applied to the combined system autopilot–aircraft as an 

external loop, the technique requires no a priori knowledge of the autopilot design. The aircraft may be 

optimized at its actual flight condition, characterized by altitude, speed, weight, center-of-gravity 

position, actual engine characteristics, and aircraft age. 

The algorithm is robust with respect to any a priori information used for its design as well as changing 

flight conditions. Noise, external disturbances (such as those coming from changing atmospheric 

conditions), and measurement biases are naturally rejected by the algorithm whose working principle is 

based on online cross-correlation measurements between decision variables and a performance index. 

The same index (i.e., the horizontal acceleration) is used for the speed-maximization mode and for 

fuel-flow minimization mode; this is because both modes are particular cases of an excess-thrust 

maximization problem. Both modes share a major part of the algorithm. Moreover, the speed-

maximization mode algorithm is a submodule of the fuel-flow minimization mode. This fact adds 

modularity and alternative ways to check the same algorithm. 

The effects of the probing disturbances on the optimization constraints are compensated with an 

adaptive feed-forward loop called an adaptive constraints controller (ACC). The ACC allows for a 

faster optimization than was possible previously by using the autopilot as the only constraint controller 

device. More importantly, it prevents offsets with respect to the optimal decision variables. With the 

ACC complementing the autopilot’s constraints-control capabilities, the optimizer takes full advantage 

of the autopilot’s action, but without requiring any information on the autopilot design.

A straightforward extension of the single-variable design was used for multivariable optimization. The 

multisurface optimization problem that was simulated seems to be somewhat decoupled. This fact 

favors the convergence and dynamic properties of the steepest-descent type of algorithm used. Were 

the problem at hand more coupled, an upgrade of the present version to a second-order one, such as a 

quasi-Newton method, would help the convergence speed in the multivariable optimization case. More 

research is necessary to ascertain whether this path is necessary, for instance, in an integrated airframe 

propulsion optimization context. The good results obtained so far for the multivariable case encourage 

a pursuit of that avenue with the proposed algorithm.



The theory developed is sound, and the resulting algorithm exhibits good dynamic and convergence 

properties. Moreover, the simulation results show the algorithm’s potential for handling complex 

multivariable performance optimization problems. The algorithm is a suitable candidate for in-flight 

integrated airframe–engine optimization. However, to apply the proposed approach requires a 

determination of small sensitivity levels under realistic cruise flight conditions of transport aircraft. 

The continued development of this technology requires algorithm evaluation in a high-fidelity 

simulation (similar to those used for FAA-certified pilot training), followed by a flight test program 

validation of the technology. A successful flight demonstration of the technology is required before 

potential users and beneficiaries will commit resources to implement the technology in new aircraft 

designs or retrofit programs.
33
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Appendix A

Sample Calculation of an Envelope Equivalent Transfer Function

As a sample calculation of an envelope equivalent transfer function, the calculations corresponding to 

the first-order system are

(A1)

The parameters for the envelope equivalent system are calculated as

(A2)

(A3)

This gives the following equivalent transfer function:

(A4)

G s( ) K
s p+
------------=

β G jωo( ) K

p 1( ωo
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p2 )1 2⁄⁄+
----------------------------------------------= =
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ω ωo=
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--------------------------------------= = =
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Appendix B

Optimization Offset Caused by Constraints Violations

To show equation (17a), we start from the equations of the longitudinal flight motion:

(B1)

(B2)

As seen in the discussion of property P3 (eq. (7)), if δs is the periodic excitation signal (i.e.,
δs = A sin ωot), the necessary condition for convergence of the optimizer algorithm in the velocity mode is

(B3)

When the constraint is satisfied,  from (B1) we have the desired result, i.e.,

(B4)

However, if the constraint is not satisfied, instead of equation (B4) we have the condition

(B5)

that we approximate by (see footnote on p. 6)

(B6)

On the other hand, assuming for D the expression:

(B7)

with ΓD : = SΓCD, and following a development similar to that used in the Design Analysis section to 
obtain equation (6), the left-hand side of (B6) turns into

(B8)

Equations (17) are thus obtained substituting (B8) into (B6).

Now, using the approximation valid for almost leveled flight: , between (B2) and (B6) we have 

(B9)

Besides, by definition of Gγ(jωo), the ωo-component of γ(t) is , which, 
correlated with δs(t) = A sin(ωot), gives

(B10)

From (B10) follows equation (18) using a standard result of correlations between sinusoidal signals 
(see expression (5) in the main text).
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ḣ 0=

corr T α( ) D δs,–cos{ } 0=

corr V̇ δs,{ } 0 ⇒=

 corr T α( ) D δs,–cos{ }  corr mg  ḣ V⁄ δs,{ } corr Ėp V δs,⁄{ }= =

corr D δs,{ }  corrĖp V δs,⁄–≅
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Appendix C 

Adaptive Rejection of a Sinusoidal Disturbance

The problem of a disturbance rejection from a measured physical magnitude of interest is posed as 
follows. In figure C–1, y is the useful signal perturbed by the disturbance d. From the available 
measurement ym, it is desired to remove the effects of d and thus recover the original signal y. For this 
objective, an independent input u, going through the channel C, is available. C is assumed to be linear 
but with unknown transfer function G(s). The signal d is a sinusoidal signal with known frequency ωo 
but unknown phase and amplitude. It is assumed that ωo does not lie in the spectrum of y. The objective 
is to design the adaptive signal synthesizer block that generates the required signal u so that  has the 
appropriate phase and magnitude to cancel out the effects of d on ym. Using notation introduced in the 
main text we write

(C1a)

(C1b)

, (C1c)

Equation (C1c) can also be written in the more compact form:

(C2)

where

(C3)

is the ψ-rotation matrix and R–ψ its inverse (or transpose given its orthogonality). We now define:

(C4)

(C5)

We are looking for  such that θ(t) → 0 (and consequently e(t) → 0). Accordingly, we first define 
the matrix Q and the function L as

(C6)

d̂
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Figure C–1.   Adaptive disturbance rejection scheme.
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For  ≠ 0, Q > 0, if and only if ψ ∈ (–π ⁄ 2, π ⁄ 2) (rotation less that 90°) and L(t) is thus a 
strictly positive function of time. From (C5) and (C6) we now calculate

(C7)
and letting

(C8)
with µ a positive constant we have

(C9)

Because η is, by definition, a bounded continuous function, from (C3), (C6), and (C9) we necessarily 
have e → 0 and θ → 0 ⇒  → – RψD.

For |ψ| ≈ π ⁄ 2, small changes in ψ may prevent Q to be Q > 0. This fact can make the adaptation 
algorithm (C1a), (C8) marginally stable, or cause a very slow convergence. If an estimate ψo of ψ is 
available, (C8) may be substituted by

(C10)

which, it can be shown, corresponds to . For ψo ≈ Q > 0, ensuring stability 
and faster convergence.

Because e(t) is not directly measurable, in practice we use ym(t) instead of e(t) in (C8) or (C10). In fact, 
we show that both signals produce asymptotically the same result. Consider the algorithm:

  (C11)

where the last limit results from the assumption that ωo is not in the spectrum of y and the well-known 
property of orthogonality of sinusoids of different frequencies.

The adaptation gain µ is somewhat arbitrary as long as it remains positive. In practice, however, it is 
chosen small to ensure a smooth evolution of the adapted parameters. Given the averaging effects 
shown in (C11), a small µ also helps to reduce the effects of noise in the measure of ym.

The block diagram of the algorithm (C1a), (C8), with e substituted by ym, is displayed in figure C–2.
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Û t( ) G jωo( ) 1–

Û
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Figure C–2.   Adaptive disturbance rejection algorithm.
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